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ABSTRACT  
moval of inputs regarded as less important led to im-
proved network performance. ANNs were capable of 
ranking the relative importance of the various formula-
tions and processing variables that influenced the re-
lease rate of the drug from minitablets. This could be 
done for all main stages of the release process. Subse-
quent training of the ANN verified that removal of less 
relevant inputs from the training process led to an im-
proved performance from the ANN. 

The objective of this work was to apply artificial neural 
networks (ANNs) to examine the relative importance 
of various factors, both formulation and process, gov-
erning the in-vitro dissolution from enteric-coated sus-
tained release (SR) minitablets. Input feature selection 
(IFS) algorithms were used in order to give an estimate 
of the relative importance of the various formulation 
and processing variables in determining minitablet dis-
solution rate. Both forward and backward stepwise al-
gorithms were used as well as genetic algorithms. Net-
works were subsequently trained using the back propa-
gation algorithm in order to check whether or not the 
IFS process had correctly located any unimportant in-
puts. IFS gave consistent rankings for the importance 
of the various formulation and processing variables in 
determining the release of drug from minitablets. Con-
sistent ranking was achieved for both indices of the 
release process; ie, the time taken for release to com-
mence through the enteric coat (Tlag) and that for the 
drug to diffuse through the SR matrix of the minitablet 
into the dissolution medium (T90-10). In the case of the 
Tlag phase, the main coating parameters, along with the 
original batch blend size and the blend time with lubri-
cant, were found to have most influence. By contrast, 
with the T90-10 phase, the amounts of matrix forming 
polymer and direct compression filler were most im-
portant. In the subsequent training of the ANNs, re- 
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INTRODUCTION 
Artificial neural networks (ANNs) are computer sys-
tems developed to mimic the operations of the human 
brain by mathematically modeling its neurophysiologi-
cal structure (ie, its nerve cells and the network of in-
terconnections between them). In an ANN, the nerve 
cells are replaced by computational units called neu-
rons and the strengths of the interconnections are repre-
sented by weights.1 This unique arrangement can there-
fore attempt to simulate some of the neurological proc-
essing ability of the biological brain such as learning 
and drawing conclusions from experience.2 
Each neuron takes 1 or more inputs and creates an out-
put, which may be passed on to another neuron. The 
method by which the neurons are organized is termed 
the "network architecture." In an ANN, the neurons are 
usually organized in layers. In feed-forward networks, 
there is always 1 input and 1 output layer with 1 or 
more hidden layers.  

Corresponding Author:  Owen I. Corrigan, Depart-
ment of Pharmaceutics and Pharmaceutical Technol-
ogy, School of Pharmacy, Trinity College, Dublin 2, 
Ireland. Phone: +353-1-6082782; Fax: +353-1-6082783; 
Email: occorrign@tcd.ie 

The number of neurons in the input and output layers is 
automatically determined by the number of input and 
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output variables in the problem being considered. 
Therefore, the number of neurons to be incorporated 
into the hidden layer is a key decision. If a hidden layer 
has too few neurons, the network will lack the power it 
needs to classify patterns in the data. If a hidden layer 
has too many neurons, existing patterns will merely be 
memorized and the network will be unable to general-
ize (ie, spot patterns in new data).3 

• the modeling of in-vitro release of drugs from 
SR hydrophilic matrix tablets2, 6-8 

• analysis of fluidized bed granulation process-
ing9,10 

• evaluation of direct compression IR tablet 
formulations11 

• modeling the formulation and processing of 
tablets12 ANNs are trained using preexisting data. At the begin-

ning of the training process, the connections between 
the neurons are set to random weight values. During 
the training process, the input and output data from the 
training data subset are fed into the network. The dif-
ference between the actual output and the training out-
put values is then calculated. The difference is an error 
value, which is decreased using a training algorithm 
during the training process by modifying the values of 
the weights at each neuron. These modifications bring 
the output of the network closer to the desired output. 
Once trained, the network can hopefully be used to 
predict accurate output values for new input data. 

All of these studies have used ANNs as a predictive 
tool (ie, to train an ANN to try to predict a specific out-
put parameter, for example, tablet dissolution, from a 
set of input variables such as formulation variables) 
and have demonstrated that ANNs are capable of a 
comparable performance to traditional statistical tech-
niques used for this purpose. 
In this study, an alternative use of ANNs in formulation 
development was explored. Because of their unique 
abilities in spotting patterns in data, ANNs can be used 
to rank which of the various formulation and process-
ing variables are most critical in influencing the output 
parameter of interest, in this case the in vitro release of 
drug from the sustained release minitablets. Knowledge 
of critical variables in determining tablet dissolution 
rate would be of considerable benefit to the formulator.  

ANNs have many advantages over conventional statis-
tical techniques. They give good results when the re-
sponse variable is highly nonlinear. In addition, historic 
or literature data can be used for training.4 Other ad-
vantages are that ANNs can make use of incomplete 
data and that no a priori knowledge of the underlying 
statistical nature of the problem is required.5 

In addition, such an investigation would also identify 
relatively unimportant variables. Removal of such vari-
ables would be of benefit particularly when training 
ANNs for predictive purposes because the more inputs 
an ANN has the more cases it needs in order to be suc-
cessfully trained—the so-called "curse of dimensional-
ity".13 Therefore, if less relevant inputs can be elimi-
nated, the ANN has a much better chance of successful 
generalization, even if some information is lost. This 
approach is known as "input feature selection" and is 
described in more detail below. 

 

Applications in Formulation Development 
The current work deals specifically with the area of 
formulation development and the use of ANNs to ex-
amine the relative importance of formulation and proc-
essing variables in determining the dissolution profile 
of a sustained release (SR) dosage form. This is a chal-
lenging problem since complex nonlinear relationships 
exist between the independent formulation and proc-
essing variables and the dependent drug release vari-
able. Such complex relationships include the levels of 
the active drug and the various excipients, possible in-
teractions between the drug and excipients, and possi-
ble interactions or synergies between the excipient and 
numerous processing factors. 

This study utilized a data set containing 125 cases of 
the drug CEL50 development project,14 all of which 
contained complete formulation and processing details 
and corresponding dissolution data. This relatively 
large data set should give greater reliability to the re-
sults obtained. 
 

The nonlinear processing ability and unique structure 
of ANNs means that they have significant potential in 
dealing with such problems and several research 
groups have already utilized ANNs in related areas, 
such as the following: 

Input Feature Selection 
In many formulation problems, a wide range of input 
variables are available that can be used to train a neural 
network, but it is hard to define which of them are most 
relevant, or indeed are useful at all. The situation is 
further confused when there are interdependencies or 
correlations between some of the input variables, 

• the modeling of in-vitro release of drugs from 
SR hydrophilic matrix capsules4 
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which means that any of a number of subsets might be 
adequate.15 
Input Feature Selection (IFS) covers a variety of tech-
niques that seek to identify input variables that do not 
contribute significantly to network performance, so that 
they can be removed. 
However, the difficulty of IFS should not be underes-
timated. It is literally an exponential search problem in 
which the number of feature subsets to be considered is 
2n, where n is the number of possible features. For 19 
features, there are over half a million possible feature 
subsets. Therefore, techniques combining mathematical 
algorithms and neural networks are used. These can be 
either stepwise algorithms that progressively add or 
remove variables or a genetic algorithm. These algo-
rithms may discover subsets of inputs that are not dis-
covered by other techniques. 
Forward stepwise feature selection starts by finding the 
input variable that, by itself, best predicts the output 
variable. It then looks for a second variable, which 
most improves the model when added to the first. This 
process is continued until either all variables have been 
selected or no further improvement is seen. Backwards 
stepwise feature selection takes the opposite approach. 
It starts with a model including all variables and then 
discards one at a time. At each stage backwards step-
wise feature selection finds the variable that least de-
grades the model when it is removed. 
An alternative to the 2 feature selection methods out-
lined above is the genetic algorithm. This mathematical 
algorithm is loosely based on the Darwinian theory of 
evolution. To start, the algorithm selects random popu-
lations of inputs. It then uses a process similar to natu-
ral selection to select better inputs, which are combined 
or "bred" together to form a new population. Over suc-
cessive generations, increasingly better populations are 
produced until eventually the optimum set of inputs is 
found. Such algorithms are especially efficient at locat-
ing interdependencies between variables. 
Each of the algorithms displays messages showing how 
they are progressing. With the stepwise selection 
methods, these messages serve to give a ranking of the 
importance of the variables. 
Once the appropriate input variables have been selected 
by the algorithms, a generalized regression neural net-
work (GRNN) is then used to test this new training set. 
These types of networks are used because they nor-
mally train very rapidly; they are able to model nonlin-
ear functions quite accurately; and they are very sensi-
tive to the presence of irrelevant input variables, which 

is an advantage when trying to decide what variables 
are required. 
Although irrelevant input variables will lead to deterio-
ration in network performance, they may do so by only 
a tiny amount, making it extremely tricky for the algo-
rithm to locate all of them. Also, as stated earlier, it is 
usually better to use fewer input variables even if this 
causes a slight increase in the error, as the generaliza-
tion power of the network may then be improved. 
Therefore, a unit penalty factor can be set. Such a pen-
alty is multiplied by the number of selected inputs and 
added to the error, thus favoring smaller networks. 
With a penalty of zero, only obviously redundant in-
puts will be discarded. Higher penalty values will favor 
smaller networks and will usually improve perform-
ance. However, if the factor is set too large, the number 
of variables becomes more important than the quality 
of the network, and this will eventually lead to the al-
gorithm screening out all inputs. 
 

The Minitablet Development Project 
The data used in the current work were generated in the 
course of a project aimed at developing extended re-
lease, enteric-coated dosage forms containing the 
equivalent of 40 mg of a drug CEL50. Initial blending 
of the materials was carried out in a Y-cone blender 
(Patterson-Kelley, East Stroudsburg, PA). The 
minitablets were manufactured using a direct compres-
sion tableting process. Small-scale and larger batches 
were compressed on a single station tablet press (Horn 
Noack, Romaco Inc, Pompton Plains, NJ) or a Fette 
P2100 rotary tablet press (Fette, Schwarzenbek, Ger-
many) with multitipped tooling (x8), respectively. The 
Opadry coatings were applied using an aqueous system 
with the enteric coatings being applied from solvent-
based coating suspensions. Small-scale and larger 
batches were coated in a Freund Hi-Coater (Vector 
Corp, Cedar Rapids, IA) or an Accela-Cota (Manesty, 
Knowsley, Merseyside, UK) tablet coater, respectively. 
A brief description of the ranges of the relevant formu-
lation and processing variables is given in Table 1. 
Eudragit L and Eudragit S coatings dissolve at different 
rates. The Eudragit L polymer dissolves at pH values 
greater than 6.0, while the Eudragit S polymer dis-
solves at pH values greater than 7.0. Therefore, the 
Eudragit S-coated minitablets are intended to present 
their dose at more distal regions of the intestine. When 
the coatings become permeable and dissolve, they al-
low progressive ingress of water into the SR cores and 
release of the active ingredient in a controlled manner. 
Release from the SR cores is by erosion or by diffusion  
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Table 1. Properties of Minitablets 

CEL50 content 16.8% 

Methocel content 10%-20% 
Klucel content 5%-10% 
Aerosil content 1% 
Magnesium stearate content 1%-3% 
Avicel content 49.2%-66.2% 
Target weight gain after Eudragit L 

coating 16% 

Target weight gain after Eudragit S 
coating 10% 

Target weight gain after Opadry 
coating 2.5% 

Spray rate of coating solution 3-420 g/min 
Original blend size of the batch 1.5-150 kg 
Batch size 1.5-150 kg 
Blend time with lubricant 5-20 minutes 
Tablet press speed 30 000-70 000 revs/hr 
Filomatic speed setting 1-6 
Tablet punch size 3.8 mm, round  

 
through the resulting viscous layer. The combination of 
the components results in a product that in vivo exhib-
its an extended duration of action suitable for once-a-
day dosing. 
 

MATERIALS AND METHODS 
Drug Release Data 
Dissolution data (125 profiles) obtained from SR 
minitablets, both coated and uncoated, were gathered 
for analysis. The original outputs for the neural net-
work were the dissolution profiles for these SR tablets. 
A USP apparatus type 2 containing 900 mL of 0.015 M 
citrate/phosphate buffer, pH 6.8, was used for tablet 
dissolution testing. The complete dissolution of both 
enteric coatings (Eudragit L and S) required that the 
medium pH was greater than pH 6.5. Sodium lauryl 
sulphate (SLS), 0.5%, was introduced to achieve sink 
conditions for the CEL50. 
The profiles were normalized between 0.0% and 100%. 
The times taken for 10% of the dosage form and 90% 
of the dosage form to be released were calculated from 
the profiles. These were converted to 2 outputs for use 
in the neural network: 

1. Time taken for 10% of the drug to be released 
(Tlag) was taken to be an indication of the lag 

time before release began (ie, the extent of the 
delaying effect of the enteric coating).  

2. Time taken for 90% of the drug to be released 
less the time taken for 10% of the drug to be re-
leased (T90-10) was taken to be an indication of 
the time taken for the drug to be released from 
the SR matrix once the outer coat had dis-
solved. 

Similar simple dissolution parameters, such as the time 
to 50% drug dissolution have been used in other stud-
ies.2,4 
The 2 separate phases in the dissolution profile (lag 
time followed by SR) are illustrated in Figure 1. 
 

Software 
The Trajan Neural Network Simulator, version 4, 
(Washington, Tyne and Wear, UK) was the software 
package used in this study. This is a Windows-based 
package, which supports numerous types of neural 
networks along with the fastest state-of-the-art training 
algorithms. The package includes other algorithms that 
carry out a variety of tasks such as pre- and post-
processing of data, input feature selection, network 
design, and selection. The software also gives exten-
sive statistical feedback on each network.15 
 

Input variables 
The number of inputs used for the network was 19 (see 
Tables 2, 3, and 4). The inputs included 11 variables 
related to the composition of the formulation and 8 
variables related to the processing conditions: percent-
age Cel50 in the formulation, percentages of methocel 
K15M, methocel K100M, methocel K100LV, klucel, 
aerosil, magnesium stearate, avicel PH101, percentage 
weight gain after Eudragit L or Eudragit S coating, per-
centage weight gain after Opadry coating, spray rate of 
the coating solution (g/min), blend size of the original 
tablet batch (kg), batch size at that stage of processing 
(kg), time (minutes) the formulation was blended with 
the lubricant (magnesium stearate), press speed (revo-
lutions per hour), Filomatic speed setting (setting on 
dial that governs how fast the blend was fed down from 
the hopper into the tablet press), tablet hardness (new-
tons), and tablet weight (mg). 
 

Input Feature Selection 
The input feature selection algorithms in Trajan were 
used to select the most important inputs in the CEL50 
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Figure 1. Dissolution profile for minitablet batch PD14859: a sigmoidal profile comprising 
an initial lag phase (Tlag) followed by a relatively linear release phase (T90-10). 

 
Table 2. Input Feature Selection Algorithm Results for the T lag Output 

 Forward Stepwise Backward Stepwise Genetic Algorithm 
Inputs rejected at unit weight penalty of zero % Aerosil 

Filomatic speed  
Tablet hardness  
Tablet weight 

% Cel50 
% Methocel K15M 
% Methocel K100LV 
% Aerosil 
Filomatic speed 
Tablet weight 

% Cel50 
% Methocel K15M 
% Methocel K100LV 
% Aerosil 
Filomatic speed 
Tablet weight 

Inputs rejected at unit weight penalty of 0.001 % Cel50 
% Methocel K15M 
% Methocel K100LV 
% Eudragit L coating  
Batch size 
Tablet press speed 

% Eudragit L coating 
Tablet press speed 
Tablet hardness  
 

% Eudragit L coating 
Tablet press speed 
Tablet hardness  
 

Inputs rejected at unit weight penalty of 0.002 % Methocel K100M  
% Magnesium stearate 

% Methocel K100M 
% Magnesium stearate 
% Avicel 
Batch size 

% Methocel K100M 
% Klucel 
% Magnesium stearate 
% Avicel 
Blend time with magnesium 
stearate 

Inputs rejected at unit weight penalty of 0.003 % Klucel 
% Avicel 
Blend time with magne-
sium stearate 

% Klucel 
Blend time with magne-
sium stearate 

Batch size 

Inputs rejected at unit weight penalty of 0.004 None None None 

Inputs rejected at unit weight penalty of 0.005 Blend size of the original 
batch 

None None 

Inputs remaining at unit weight penalty of 0.005 % Eudragit S coating 
% Opadry coating 
Spray rate of coating solu-
tion 

% Eudragit S coating 
% Opadry coating 
Spray rate of coating solu-
tion 
Blend size of the original 
batch 

% Eudragit S coating 
% Opadry coating 
Spray rate of coating solu-
tion 
Blend size of the original 
batch  
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data set. The forward selection, backward selection, 
and genetic algorithms were all used. Each algorithm 
was run 10 times. An input was deemed to be useful if 
it was selected as important in more than half the cases 
(ie, 6 or more times). The unit weight penalty was set 
in the range 0 to 0.005 (increasing in increments of 
0.001). 
An additional analysis was done by observing the order 
in which the inputs were added during the running of 
the forward selection algorithm with zero unit weight 
penalty. The first input selected was taken to be the 
most important and so on. 
A similar analysis was carried out on the backward 
selection algorithm with a high unit weight penalty (ie, 
one where all or nearly all of the input would ulti-
mately be rejected). The first input to be discarded was 
regarded as being the least important and so on. 
A percentage of Aerosil was included in the inputs as a 
negative control as its level did not change in any of 
the formulations included. If the algorithms function 
correctly, they should select the percentage of Aerosil 
as unimportant and rank it as the least important input. 
The above experiments were first carried out for the 
Tlag output and then repeated for the T90-10 output. 
 

Training the ANN 
ANNs were trained using a 5-fold cross-validation 
model to produce estimations of generalization error 
(ie, the 125 cases in the Cel50 data set were randomly 
divided into 5 subsets of 25 cases that were used for 
verification on models trained with the remaining 100 
cases). The verification subsets were included to ensure 
that the ANN was generalizing and not merely memo-
rizing the data, so called "over-learning." Cross-
validation was used as it gives a more reliable estimate 
of generalization performance compared with merely 
using a single verification set. Training was stopped 
when the error of the verification subset began to rise 
(this is an indication that over-learning is occurring). 
Initially, all formulation and processing variables in the 
Cel50 data set were used for training along with one 
output (either the Tlag output or the T90-10 output). The 
performance of the ANN was assessed by measuring 
the error (root mean squared) separately for both the 
training and verification subsets. All data were ana-
lyzed using one-way analysis of variance (ANOVA). 
Where a significant difference was found between 
groups, Tukey’s post-hoc test was performed to iden-
tify the location of this difference using GraphPad 

Prism, version 3.00, software (GraphPad Software Inc, 
San Diego, CA). 
Then, inputs were systematically removed to see if re-
moval of these less relevant inputs (as determined by 
IFS above) could lead to improved performance. The 
network architecture used in this study was the feed-
forward multilayer perceptron (MLP). This type of 
network has been extensively described in the literature 
and has been found to be very efficient in dealing with 
regression problems like this.2,16 Only one hidden layer 
was used in all cases and the numbers of hidden neu-
rons in that layer were kept to a minimum. This was 
done to minimize the possibility of over-learning. The 
ANN was trained using the back propagation algorithm 
with a sigmoidal activation function for both the hidden 
and output layers.1,2,10 This algorithm has the advantage 
that because of its slower convergence and randomized 
order of presentation of cases, it is less inclined to over-
learn. 
The following standard algorithm parameters were 
maintained throughout: learning rate, 0.1; momentum, 
0.3. 
 

RESULTS AND DISCUSSION 

Input Feature Selection 
In general, the 3 different methods for input feature 
selection showed broad similarities in their assessment 
of which inputs were important/unimportant in deter-
mining dissolution profiles (Tables 2 and 3). The or-
ders in which the forward and backward stepwise algo-
rithms added/subtracted the inputs confirmed the same 
rank order of importance of variables (Table 4). 
For the Tlag, the indicator of the extent of the lag time 
before dissolution began, coating parameters such as 
percentage Eudragit S and Opadry coating applied and 
the spray rate of the coating solution were among the 
most important inputs highlighted (Table 2). This 
would be expected because the most important factor 
delaying the release from the minitablets is the enteric 
coating. What is less obvious is that the blend size of 
the original batch was also selected as important. This 
selection reflects the influence of scale-up on the final 
dissolution characteristics of the product. 
Inputs regarded as being of moderate importance in-
cluded the percentages of the main components along 
with 1 processing parameter and the blend time after 
the addition of lubricant (magnesium stearate). It has 
long been known that changes in the duration and 
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Table 3. Input Feature Selection Algorithm Results for the T90-10 Output 
 Forward Stepwise Backward Stepwise Genetic Algorithm 
Inputs rejected at unit weight penalty of zero % Methocel K15M % Methocel K15M % Methocel K15M 
 % Methocel K100LV % Methocel K100LV % Methocel K100LV 
 % Aerosil % Aerosil % Aerosil 
 Blend time with magnesium 

stearate 
Tablet hardness Tablet hardness 

 Filomatic speed Tablet weight Tablet weight 
 Tablet hardness   
 Tablet weight   

Inputs rejected at unit weight penalty of 0.001 % Cel50 % Cel50 % Cel50 
 % Eudragit L coating % Eudragit L coating % Eudragit L coating 
 % Opadry % Opadry % Opadry 
 Tablet press speed Blend time with mag-

nesium stearate 
Spray rate of coating solu-
tion 

  Tablet press speed Blend time with magnesium 
stearate 

  Filomatic speed Tablet press speed 
   Filomatic speed 

Inputs rejected at unit weight penalty of 0.002 % Methocel K100M % Eudragit S coating % Methocel K100M 
 % Eudragit S coating Spray rate of coating 

solution 
% Eudragit S coating 

 Spray rate of coating solu-
tion 

Batch size Batch size 

 Batch size   

Inputs rejected at unit weight penalty of 0.003 % Magnesium stearate % Methocel K100M % Magnesium stearate 
 Blend size % Magnesium stearate Blend size 
  Blend size  

Inputs rejected at unit weight penalty of 0.004 % Klucel % Klucel None 
  % Avicel  

Inputs rejected at unit weight penalty of 0.005 % Avicel None % Klucel 
   % Avicel 

Inputs remaining at unit weight penalty of 0.005 None None None 
 
 
mechanism of the lubricant mixing process can lead to 
changes in the dissolution properties of tablets.17,18 
Less important variables included most of the process-
ing variables and properties of the finished tablet, such 
as tablet weight and hardness. The latter 2 are probably 
unimportant because these factors were tightly con-
trolled throughout the project. A change in dissolution 
would probably not be seen unless hardness or weight 
fell below a critical value, and such values were never 
generated in this data set. 
More surprisingly, the percentage of drug and the per-
centage of Eudragit L coating applied were selected as 
being relatively unimportant. The differences in impor-
tance between the Eudragit L and Eudragit S coating 
levels on minitablets may have been artificially accen-
tuated due to the poor solubility of the Eudragit S 
polymer at the pH 6.8 value of the dissolution medium. 

The percentages of methocel K15M and K100LV were 
also regarded as relatively unimportant. This is most 
likely because these polymers were used in very few 
formulations, being rejected early in the development 
program in favor of the methocel K100M grade.  
For the T90-10 output, the ANN was less definite as to 
which inputs were most important with no inputs re-
maining when the unit weight penalty was raised to 
0.005 (Table 3). This reflects the increased complexity 
of the process controlling the release of the drug from 
the hydrophilic matrix compared with the previous 
(Tlag) output. 
The most important inputs were selected to be the per-
centage of klucel (one of the matrix-forming polymers) 
and the percentage of avicel (an insoluble filler, the 
largest percentage constituent of the minitablets) 
(Table 4). Next in line came the blend size of the 
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Table 4. Order of Importance of Variables for the Tlag and T90-10 Outputs as Determined by the Forward and Back-
ward Stepwise Algorithms 

 Tlag T90-10 
 Forward Step-

wise Ranking 
Backward Step-

wise Ranking 
Forward Step-
wise Ranking 

Backward Step-
wise Ranking 

% Opadry 1 2 7 9 
% Eudragit S 2 1 7 6 
Spray rate of coating solution 3 3 9 8 
Blend size of original tablet batch 4 4 4 3 
% Klucel 5 6 2 2 
Blend time with magnesium stearate 6 5 14 12 
% Avicel 7 7 1 1 
Batch size 8 9 6 7 
% Magnesium stearate 9 8 5 5 
% Methocel K100M 10 10 3 4 
Press speed 11 11 10 10 
% Eudragit L 12 13 11 11 
% Cel50 13 15 12 13 
Tablet hardness 14 12 17 16 
% Methocel K15M 15 17 13 16 
% Methocel K100LV 16 16 14 19 
Filomatic speed 17 14 16 14 
Tablet weight  18 19 18 18 
% Aerosil 19 18 18 15  

 
original batch (effect of scale-up), the percentage of 
methocel K100M (the other matrix-forming polymer) 
and the percentage of magnesium stearate (another in-
soluble constituent). Interestingly, some coating pa-
rameters such as percentage Eudragit S coating applied 
and the spray rate of coating solution applied were still 
relatively important showing that the enteric coat was 
still having an influence on the release of the tablet 
even after that release was well under way. 
Less important were the other processing parameters 
and the percentages of other constituents such as 
Eudragit L, Opadry, Cel50, aerosil and the 2 methocel 
polymers K15M and K100LV. In contrast to the Tlag 
output, the blend time with magnesium stearate was 
ranked as relatively unimportant. 
The percentage of aerosil was included in the inputs as 
a negative control as its level did not change in any of 
the formulations included. All the algorithms selected it 
as unimportant and it was ranked at or near the bottom 
of importance by both the forward and backward step-
wise algorithms. 

ANN Training 
The number of hidden neurons to be used in the ANN 
was selected by a preliminary experiment in which 
networks were trained using a randomly selected veri-
fication set of 40 cases and increasing the number of 
hidden neurons 1 at a time (data not shown). The opti-
mum number of hidden neurons was defined as the 
network that gave the lowest verification error. This 
was found to be 4 hidden neurons for the Tlag and 5 
hidden neurons for the T90-10 output. This architecture 
was used in all subsequent experiments. 
When training on the Tlag output using all 19 inputs, the 
ANN performed well giving acceptably low errors for 
both training and verification subsets (Table 5). Sig-
nificantly different training and verification errors were 
obtained depending on which subset of cases was used 
as the verification set. This justified the approach of 
using a 5-fold cross-validation model rather than just a 
single verification set. 
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Table 5. Results of ANN Training for Tlag Output* 

Subset No. No. of Inputs Training Error Verification Error No. of Inputs Training Error Verification Error 

1 19 0.48 ± 0.01 0.24 ± 0.02 19 1.30 ± 0.03 1.13 ± 0.07 

1 13 0.48 ± 0.01 0.24 ± 0.02 14 1.34 ± 0.07 0.99 ± 0.04† 

1 10 0.42 ± 0.12 0.25 ± 0.02 12 1.54 ± 0.20‡ 1.07 ± 0.04 

2 19 0.45 ± 0.03 0.23 ± 0.02 19 1.51 ± 0.16 1.99 ± 0.07 

2 13 0.46 ± 0.02 0.27 ± 0.04 14 1.32 ± 0.15 1.88 ± 0.14 

2 10 0.44 ± 0.13 0.31 ± 0.03‡ 12 1.57 ± 0.13 1.98 ± 0.04 

3 19 0.32 ± 0.04 0.58 ± 0.04 19 1.71 ± 0.09 1.34 ± 0.06 

3 13 0.23 ± 0.04 0.44 ± 0.04† 14 1.64 ± 0.21 1.24 ± 0.03† 

3 10 0.24 ± 0.03† 0.34 ± 0.04† 12 1.78 ± 0.05 1.27 ± 0.03† 

4 19 0.21 ± 0.02 0.29 ± 0.03 19 1.53 ± 0.34 1.41 ± 0.09 

4 13 0.25 ± 0.06 0.28 ± 0.08 14 1.41 ± 0.04 1.18 ± 0.04† 

4 10 0.24 ± 0.03 0.22 ± 0.03 12 1.47 ± 0.13 1.12 ± 0.11† 

5 19 0.45 ± 0.03 0.54 ± 0.03 19 1.68 ± 0.31 2.59 ± 0.10 

5 13 0.23 ± 0.04† 0.39 ± 0.07† 14 0.99 ± 0.28† 2.41 ± 0.08† 

5 10 0.27 ± 0.05† 0.44 ± 0.04† 12 1.27 ± 0.35 2.43 ± 0.06† 

*ANN indicates artificial neural network. Four hidden neurons were used for the Tlag and 5 hidden neurons for the T90-10 outputs. The 6 inputs 
removed in the 13 input networks for the Tlag output were the percentage of Cel50, the percentage of methocel K15M, the percentage of 
methocel K100LV, the percentage of aerosil, Filomatic speed, and tablet weight. The 9 inputs removed in the 10 input networks for the Tlag 
output were above 6 plus the percentage of Eudragit L coating applied, tablet press speed, and tablet hardness. The 5 inputs removed in the 14 
input networks for the T90-10 output were the percentage of methocel K15M, the percentage of methocel K100LV, the percentage of aerosil, 
tablet hardness, tablet weight. The 7 inputs removed in the 12 input networks for the T90-10 output were above 5 plus blend time with magne-
sium stearate and Filomatic speed. 
† Significantly better than 19 input network P < .05 
‡ Significantly worse than 19 input network P < .01  
 
In order to see if generalization performance could be 
improved, inputs were removed from consideration. 
Initially, 6 inputs were eliminated. Those eliminated 
had been rejected at the unit weight penalty of zero, by 
both the backward stepwise and genetic algorithms 
(namely, percentage of Cel50, percentage of methocel 
K15M, percentage of methocel K100LV, percentage of 
aerosil, Filomatic speed, and tablet weight). Training 
was then carried out using the remaining 13 inputs. 
This training produced error values that were similar to 
or, in some cases, significantly lower than those ob-
tained by using all 19 inputs, showing that the removal 
of unimportant inputs had enabled the ANN to general-
ize better. 
In order to see whether or not the elimination of more 
inputs could lead to a further improvement, another 3 
inputs were removed. These were the inputs rejected by 
the backward stepwise and genetic algorithms at a unit 
weight penalty of 0.001 (namely, percentage Eudragit 
L coating, tablet press speed, and tablet hardness). In 
general however, when training was carried out using 

the remaining 10 inputs, performance was not signifi-
cantly improved compared with using 13 inputs. A plot 
of actual versus estimated values for Tlag is shown in 
Figure 2. 
The ANN did not perform as well during the training 
of the T90-10 output using all 19 inputs, reflecting the 
greater difficulty of this problem with both the training 
and verification errors being much higher than those 
obtained for the Tlag output (Table 5). The greater error 
is also evident from a comparison of Figures 2 and 3. 
In the latter, the actual values of T90-10 are plotted 
against the ANN estimates. 
Once again, less relevant inputs as detected by IFS 
were removed to see if network error could be lowered. 
Initially the 5 inputs, selected as unimportant by all 3 
algorithms at a unit weight penalty of zero (ie, percent-
age of methocel K15M, percentage of methocel 
K100LV, percentage of aerosil, tablet hardness, and 
tablet weight) were discarded. When networks were 
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Figure 2. Plot of actual values against estimated values for the Tlag output. 

 

 
Figure 3. Plot of actual values against estimated values for the T90-10 output. 

 
trained with the remaining 14 inputs, the training and 
verification errors were either similar or, in some cases, 
significantly lower than when all 19 inputs were used. 

An additional 2 inputs were removed to see if further 
improvement could be obtained. These inputs were the 
additional pair rejected at the unit weight penalty of 
zero by the forward stepwise algorithm, namely, blend 
time with magnesium stearate and Filomatic speed. 
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This change did not result in much further improve-
ment however. Indeed, some of the training errors were 
significantly worse. This indicated that inputs neces-
sary for the training of the ANN had been removed. 
 

CONCLUSION 
With regard to input feature selection, all 3 algorithms 
performed well and gave consistent rankings for the 
importance of inputs. In the case of the Tlag output, the 
main coating parameters were highlighted, as would be 
expected. Less obviously, the blend size of the original 
batch was shown to have some influence. Most other 
processing parameters were shown to be relatively un-
important with the exception of the blend time after the 
addition of magnesium stearate. 
In the case of the T90-10 output release rate parameter, 
the percentage of matrix-forming polymer along with 
the amount of direct compression base was classed as 
most important. Coating parameters were still seen as 
having some influence, and processing parameters 
were once more classified as being less important. All 
algorithms were able to distinguish and reject clearly 
redundant inputs. 
The ANN was more successfully able to train networks 
with low errors when the Tlag output was used com-
pared with the very high errors seen with the T90-10 out-
put. The factors affecting the release of the drug from 
the SR matrix (represented by the T90-10 output) are 
evidently more numerous and complex than those gov-
erning the lag time from coated tablets (represented by 
the Tlag output). 
Removal of the 6 least important inputs as determined 
by input feature selection for the Tlag output led to an 
overall improvement in both the training and verifica-
tion errors obtained. This improvement indicates that 
although removal of less important inputs may lead to 
the loss of some information, the increased simplicity 
can lead to better generalization ability by the ANN. 
When an additional 3 inputs were eliminated, no fur-
ther significant improvement was seen. 
Removal of inputs also changed the performance of the 
ANN in training for the T90-10 output. The discarding of 
5 inputs gave a marked overall improvement, whereas 
removing an additional 2 led to signs of deterioration. 
Because of the high errors seen with the T90-10 output, it 
is likely that this problem was too complex for the 
ANN to model accurately. A larger data set may there-
fore be necessary to successfully model this release 
phase. 

The techniques employed above show promise, par-
ticularly if applied to large datasets. They are capable 
of extracting valuable information from historical for-
mulation data previously considered of little impor-
tance. Knowledge of critical formulation variables 
would be of considerable benefit to the formulation 
scientist at the development stage. 
In addition, data from this project could be combined 
with data generated from other projects using similar 
water-soluble drugs and thus extend the scope of these 
ANNs. Once such large databases are in existence they 
can serve as a form of "institutional memory" aiding in 
the selection of suitable formulations and accelerating 
the development process. 
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